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1 Facultad de Ingenieŕıa, Universidad de Buenos Aires
bouza.magdalena@gmail.com,

2 Instituto Argenitno de Matemáticas (IAM), CONICET
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Abstract. In this paper we propose a new method for common visual
pattern identification via Directed Graphs. For this we match common
feature points between two images and then apply hierarchical clustering
methods to one of them to discriminate between different visual patterns.
In order to achieve this last task we introduce a technique to obtain an
asymmetric dissimilarity function AX(x, x′) between the nodes X of the
network N = (X,AX). For each node, the method weighs the distance
between each node and the distance with all the other neighbours. A
dendrogram is later obtained as the output of the hierarchical clustering
method. Finally we show a criteria to select one of the multiple partitions
that conform the dendrogram.
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learning, image processing, directed graph, hierarchical clustering.

1 Introduction

Visual pattern recognition focuses on identifying visual objects that are com-
monly presented in two images under comparison. Among the several possible
approaches to achieve this end, such as statistical classification and neural net-
works, etc. [4, 5, 1], a very popular one involves clustering and graph theory.

In pattern recognition problems, certain features are extracted from the im-
age, and some similarity (or dissimilarity) function is computed between all pairs.
In the classical approach, this similarity functions need not be a metric but are
required, however, to be symmetric.

The use of asymmetric similarity (dissimilarity) functions in visual pattern
recognition is quite unexploited. By introducing asymmetries, we are incorporat-
ing more information to our problem. In [6] a method for asymmetrical clustering
is presented, making use of the scale invariant feature transform (SIFT) to ob-
tain the image feature points.

In [7] an axiomatic construction of hierarchical clustering in asymmetric net-
works is developed, while in [8] an algorithmic approach is presented.
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In this paper we propose a method for visual pattern recognition via hier-
archical clustering, using asymmetric dissimilarity functions. Two issues will be
addressed in this work: first, the construction of the link weights of the graph.
Second, the procedure to obtain the dendrogram associated to the problem, and
how to select a partition from it.

Throughout this paper matrices will be uppercase italic boldface letters and
vectors lowercase italic boldface. For any matrix Z ∈ Rp×q (or vector z ∈ Rq),
ZT (zT ) denotes its transpose.

2 Hierarchical Clustering

In this section we will give general notions of hierarchical clustering, as well as
present the notation to be used throughout the paper.

Let N = (X,AX) be a network, with X being the set of n nodes, and
AX : X × X → R+ the dissimilarity function defined for all pairs x, x′ ∈ X.
A(x, x′) must be nonnegative, and A(x, x′) = 0 if and only if x = x′, however
it does not need to satisfy the triangle inequality and may be asymmetric. Note
that the dissimilarity function can be written in matrix form AX , where i, jth
element of such matrix is AX(xi, xj).

Consider the partition PX = (B1, . . . , Bl), where Bi ∩ Bj = ∅ for i 6= j and
∪li=1Bi = X is a clustering of the set X. In hierarchical clustering, the output
is called a dendrogram, DX , and consists of the collection of nested partitions
DX(δ), where δ ≥ 0 represents the resolution. If nodes x and x′ are in the
same cluster at resolution δ, we say that they are equivalent at such resolution
(x ∼DX(δ) x

′). The dendrogram must satisfy:

(D1) Boundary Conditions DX(0) = {{x} , x ∈ X} and DX(δ0) = {X} for some
δ0 sufficiently large.

(D2) Resoltion For any δ1 < δ2, if we have x ∼DX(δ1) x
′ for some x, x′, then

x ∼DX(δ2) x
′.

Depending on the clustering method used, the dendrogram obtained is dif-
ferent. If D is the space of all dendrograms and N is the space of networks, one
can define the clustering method as the function H : N → D. For the network
N = (X,AX), DX = H(X,AX) corresponds to the output of the clustering
method H.

As shown in [7], there exists an equivalence between dendrograms and ultra-
metrics, which are mathematically easier to work with. An ultrametric uX is a
function uX : X × X → R+ that satisfies uX(x, x′) = uX(x′, x), uX(x, x′) =
0⇔ x = x′ and uX(x, x′) ≤ max(uX(x, x′′), uX(x′′, x′))∀x, x′, x′′ ∈ X.

The dendrogramDX defines the ultrametric u(x, x′) := min
(
δ ≥ 0, x ∼DX(δ) x

′) .
Conversely, for a given uX defining the relation ∼UX(δ) as x ∼UX(δ) x′ ⇔
uX(x, x′) ≤ δ we obtain an equivalence relation. The collection of partitions
induced by ∼UX(δ):=

(
X mod ∼UX(δ)

)
is a dendrogram.

For the construction of hierarchical clustering methods, [7] proposes two ax-
ioms: Axiom of Value (A1) and Axiom of Transformation (A2).
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Axiom 1. (Axiom of value) Given a two-node network N = (X,AX) with
X = (p, q) , AX(p, q) = α, and AX(q, p) = β, the ultrametric uX = H(X,AX)
produced by H is uN (p, q) = max(α, β).

Axiom 2. (Axiom of Transformation) Consider two networks NX = (X,AX)
and NY = (Y,AY ), and a dissimilarity reducing map Φ : X → Y (for all x, x′ ∈
X AX(x, x′) ≥ AY (Φ(x), Φ(x′))). The output ultrametrics satisfy uX(x, x′) ≥
uY (Φ(x), Φ(x′))

A hierarchical clustering method H is said to be admissible if it satisfies both
Axioms 1 and 2.

In [7] and [8] two hierarchical clustering methods are proposed: reciprocal
(uRX) and non-reciprocal (uNRX ) clustering. These two have the property of being
extremal ultrametrics, which means that for any admissible clustering method
H and an arbitrary network N = (X,AX), the resulting ultrametric uX =
H(X,AX) satisfies that uNRX (x, x′) ≤ uX(x, x′) ≤ uRX(x, x′). In this work we
shall focus only on the non-reciprocal method.

To obtain the non-reciprocal clustering method one first needs to define the
unidirectional minimum chain cost as ũNRX (x, x′) = minC(x,x′) maxi|xi∈C(x,x′)AX(x, x′),
where C(x, x′) is a chain linking nodes x and x′. The non-reciprocal clustering
method H with ultrametric output uNRX = H(X,AX) is given by

uNRX (x, x′) = max(ũNRX (x, x′), ũNRX (x′, x)) (1)

From 1 it can be seen that in non-reciprocal clustering, we allow for x and x′ to
be joined if there exist (possibly) different chains C1(x, x′) and C2(x′, x) whose
costs are less than δ.

3 Wang-Ma Method

We shall first explain the method proposed in [6], which, up to our knowledge,
is the only other approach to the use of directed graphs in visual pattern recog-
nition.

3.1 Extraction of the dissimilarity matrix

In order to obtain the asymmetric link weights, they first find a symmetric graph
for the problem. Given two images I1 and I2, the scale invariant feature transform
(SIFT) technique [10] is used to extract feature points from them. The output
of this technique consists of two sets of vectors: the feature points (f) and the
feature descriptors (d). The first is a 4-dimension vector containing orientation,
magnitude and position of each feature. The second is a 128-dimension vector,
one for each feature point, that contains the local feature representation. One of
the main advantages of this method is that the features are invariant to image
scaling and rotation, and partially invariant to change in illumination and 3D
camera viewpoint [10].
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Let (f1(s),d1(s)), s = 1, . . . , S and (f2(t),d2(t)), t = 1, . . . , T be the feature
points and feature descriptor vectors for images I1 and I2 respectively. A point-
to-point correspondence is obtained for all points from one set to the other,
computing the euclidean distance between each pair f1(i), f2(j), with i being
a point from I1 and j from I2. To reduce the number of points and in order to
eliminate incorrect point-to-point matches, a pruning process is applied based
on a thresholding process. This threshold η is empirically determined. Each
remaining point-to-point correspondence will be considered a node in the graph,
and the connection between any two nodes is considered a link.

Given the two sets A with M elements, and B with N , obtained from I1 and
I2 respectively, each vertex is a duple (a, b), where a ∈ A and b ∈ B. For a pair of
vertices vi = (ai, bk) and vj = (aj , bl) we introduce the notation di,j = ‖ai, aj‖2
and dk,l = ‖bk, bl‖2.

Based on the Pairwise Spatial Consistency (PSC) principle (see [6],p. 1410)
the weights between nodes vi and vj for the symmetric graph are computed as
wi,j = |dk,l − αdi,j | . The value of α is unknown, but for the PSC principle to

be valid one must have α = Cn =
dk,l

di,j
.

If there are K vertices, then the weights wi, j can be represented by a K×K
matrix, W . The element in row i and column j is simply wi,j . This matrix is

symmetric (W = W T ) and the diagonal elements are zero.
Once the undirected graph’s weights are obtained, [6] proposes an intuitive

approach to map it into an asymmetrical graph. The basic idea is to compare
each link weight with the link weights of all direct neighbours. For example,
consider the graph in Fig. 1. For node v1, the weight w1,2 can be regarded small
with respect to w1,3 and w1,4. However, for node v2 this same weight is quite
large compared to the link weights shared with other neighbours. It is intuitive
that node v1 should favour joining with v2 more than v2 with v1.

Fig. 1: Example: (a) Undirected graph, (b) Directed graph.

This mapping of the weights wi,j into the directed graph weights ei,j is done
through the Gaussian Link-Weight Mapping Function [6] . To reflect the asym-
metries in the graph, the n-ranking process is proposed. Calling γi the ith small-
est weight wi,j between node vi and its neighbours

ei,j =
1

γi
exp

(
−
w2
i,j

2γ2i

)
, ej,i =

1

γj
exp

(
−
w2
i,j

2γ2j

)
(2)
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This weights can be expressed in matrix form, E, which is asymmetrical.

3.2 Common visual pattern extraction

Once the asymmetric weights ei,j are obtained, for each α considered a new di-
graph is constructed. A subset of the digraph that yields the largest average link
weight will be identified and denoted as the subgraph. The average link weight is
computed as C = (xTEx)/L2, where x is a vector of length K that has xi = 1 if
vi belongs to the subgraph, xi = 0 otherwise. Thus, the maximization problem
argmaxxC, subject to

∑K
i=1 = L and xi = {0, 1} must be solved. Note that

since E is asymmetrical, traditional optimization methods such as the spectral
method can not be used. Each identified subgraph is then subjected to a thresh-
olding process: if C ≥ ν then the subgraph is considered a strongly-associated
subgraph and is identified as one common visual pattern. This threshold is also
determined empirically.

If two distinct objects are present in both images with the same scale-change
factor α, they will be identified in the same subgraph. In order to discriminate
patterns in this situation some extra processing is needed.

4 Our Proposed Method

4.1 Asymmetric dissimilarity matrix extraction

As in the method proposed in [6], we will also apply the SIFT technique on each
of the pictures to extract the corresponding features. If R and Q feature points
are detected in I1 and I2 respectively, the process will yield R feature points and
their corresponding feature descriptors (f1, d1) for I1 and Q for I2 (f2, d2).

We propose to first find one-to-one correspondences between points from
image 1 and image 2 and apply a pruning process, just like in [6], to discard
wrong matches. Once correct matches between I1 and I2 are found, we can
simply detect objects in one of the images, and use the matched points to locate
them in the other.

The first task is achieved by computing di,j = ‖d1,i−d2,j‖2 ∀i = 1, . . . , R, j =
1, . . . , Q, where indexes i, j indicate the ith and jth features in d1 and d2 re-
spectively. If di,j < ξ then we consider it as a correct match. In this paper we
empirically determined the threshold ξ to be 0.5.

The nodes for the graph will be those points in one image, say I1, which found
a match in the other. To compute the weights between nodes, we use feature
point vectors. If two feature points are close to each other, and belong to the
same pattern, their distance is expected to be small. Furthermore, since no two
vectors f1,i, f1,j , j 6= i can be equal (it contains the position), if the distance
between two feature points is zero, then they must be the same. Thus, we define
the distance between two nodes vi, vj

disti,j = ‖f1,i − f1,j‖2 (3)
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In order to obtain our asymmetric dissimilarity matrix, A we shall use an
approach similar to the one proposed in [6]. To avoid outlier problems, we will use

robust error measure, in particular the Forsyth error function: e(r) = r2

a2+r2 . We
shall define a different ai for the each node vi. The goal is that those nodes which
have some distance significantly smaller compared to the remaining neighbours,
give more importance to those links. This implies a steeper error function around
zero, which, occurs for larger values of a. We then define ai for the ith node as
ai = 2 max(ãk)− ãi, where ãk is the minimum distance between nodes for node
vk. The link weights, and thus the dissimilarity matrix, are computed as:

Ai,j =
dist2i,j

a2i + dist2i,j
; Aj,i =

dist2i,j

a2j + dist2i,j
; (4)

Theorem 1. The matrix whose coefficients are obtained from 4is in fact a dis-
similarity matrix, i.e. satisfies non-negativity (Ai,j ≥ 0) and Ai,j = 0 iff i = j.

Proof. First, note that disti,j = ‖f1,i − f1,j‖2 ≥ 0 (5), and disti,j = 0 ⇔ i =
j ≡ vi = vj . (6).

Second, ai = 2 max(ãk)− ãi ≥ 2 max(ãk)−max(ãk) = max(ãk) > 0. (7)

A(vi, vj) = Ai,j =
disti,j

a2i+disti,j
. From ?? and 7, we have that a2i + disti,j > 0, thus

A(vi, vj) ≥ 0 and A(vi, vj) = 0 only when disti,j = 0, which, from ??, occurs if
and only if vi = vj .

4.2 Common Visual Pattern Extraction

Once we have our dissimilarity matrix A, we can apply the theory presented in
Section 2 to obtain the corresponding ultrametric uX(x, x′) for a given hierar-
chical clustering method H.

As seen from 1, non-reciprocal clustering searches for directed chains of min-
imum infinity norm cost in AX to construct ũX and selects the maximum of
ũX , ũ

T
X . In [8], they show an algorithm for performing such operations using

matrix powers in the dioid algebra (R+ ∪ {+∞},min,max)[3]. Denoting the
operations min and max with ⊕ and ⊗ respectively we have that the matrix
product is given by

[A⊗B]i,j =

n⊕
k=1

(Ai,k ⊗Bk,j) = min
k∈[1,n]

max (Ai,k,Bk,j) (8)

Proposition 1. For a given network N = (X,AX) with K nodes, the non-

reciprocal ultramentric can be computed as uNRX = max
(
A

(K−1)
X , (AT

X)(K−1)
)

Proof. See [9]

Once we obtain the output ultrametric for our hierarchical clustering method,
we use the joining algorithm [2] to extract the dendrogram DX .
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As stated in Section 2, a dendrogram DX is a collection of nested partitions.
The question is which of this partitions better identifies each visual pattern
presented in both images. Ideally, we would like a partition in which all different
patterns conform different clusters and no node belonging to one pattern is
clustered with some other object.

Let δ = δ1, . . . , δj be de resolutions at which a new cluster is formed, in as-
cending order. In order to select a partition, we propose to compute the difference
between consecutive elements of δ and select de largest, i.e.maxt={2,...,j}(δt −
δt−1). If this maximum is achieved between δk and δk+1, we will select parti-
tions that cluster together at resolution δ < δk+1. While simulations suggest
this method works, further research will be done in order to obtain some other
criteria that satisfies some optimality condition.

5 Simulations

In this section we will analyse the performance of the method. To simulate
practical situations, we shall use a synthetic image. For this we will randomly
generate P feature points corresponding to l different visual objects. The same
feature points will be present in both images, but a predefined rotation factor will
be added to the features in I2. Also, some outliers will be randomly generated
in both images. An outlier is a feature point present in one image, but not
in the other. In order to simulate geometric perturbations, a Gaussian white
noise N (0, σ2) is also added to features in I2 to deviate the computed spatial
coordinate. In the simulations the pattern recognition technique will be applied
to I2, since it represents the worst case scenario (using I1, rotation and noise
wouldn’t affect the pattern identification).

We ran trials with P=12 with the number of outliers ranging from 0 to 60
with no noise and some predefined rotation applied. In all cases, a correct point
to point detection as well as a correct object classification were obtained. This
shows that our method is immune to this sort of outliers. We also tested the per-
formance under the effect of Gaussian noise for σ = {1, 2, . . . , 10}. As expected
from the previous experiment, the performance with and without outliers was
the same for each value of σ. For σ < 10 all matches were correct, and could
perform a correct pattern classification. For σ = 10 we found all point to point
correspondences were correct, however we lost the ability to identify different
objects.

The results presented in [6] for the Wang-Ma method show loss of perfor-
mance when both outliers and gaussian noise are present is significant for values
of σ ≥ 4. Also, for a fixed σ there is significant performance loss as the number of
outliers increases. Comparing the results of both methods suggests our presented
algorithm has better performance.

Secondly, we would like to evaluate how well the method perform with natural
images. This is shown in figure 2. It can be seen that both objects are correctly
identified. It also appears to have no one to one correspondence errors between
images. Finally, in the dendrogram we see how the hierarchical clustering method
satisfies Axioms 1 and 2.
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(a) (b)

Fig. 2: Simulation result, (a) Final matching, (b) Dendrogram

6 Conclusions

In this paper, a new method is proposed to detect all common visual patterns
presented in two images using directed graphs and hierarchical clustering meth-
ods. Experimental results suggest improvement with respect to other similar
methods. Future work will be done in the optimization of the criteria to select
partitions. Finally, it is worth to mention that while this paper is focused on the
application in image processing, the approach could be applied to other fields.

This work was partially financed by CONICET, Universidad de Buenos Aires,
grant No. UBACyT 20020130100357
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