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Abstract.This paper studies the application of genetic atgms in helping to
select the proper architecture and training pararagby means of evolutionary
simulations done on a series of real load dataa feeural network to be used in
electric load forecasting. Particularly, we invgate the application of a novel
fitness function to the genetic algorithms, insteddhe usual ones, based on
the sum of the squares of the errors. We compaerdbults of the neural
networks thus specified with that of four benchnsaitkvo naive forecasters, a
linear method, and a neural network in which thexpeter values are found by
means of a grid search.
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1 Introduction

Electricity is the form of energy most used throoghthe world. It generates
heat, light and power, and is directly linked tce ttechnological and economic
development of a country. The electricity genegathystem may be compared to a
productive system in which plants, turbines andegators combined with fuel or
water (inputs) produce electricity (output), whistthen distributed to the clients. For
proper and efficient operation of any productiorsteyn, planning and production
control is required; this requires forecasts fa kbng term, the middle term and the
short term. For the electricity generating systelosg-term forecasts (for several
years ahead) are needed for planning the exparmioreduction of production
capacity - by the installation of new plants, faample. Medium term forecasts (for a
few weeks or months ahead) are necessary to sugeoidions on the utilization of
the existing system - the purchase of fuel, or daleg of maintenance activities.
Short-term forecasts (one hour to a few days aheae)necessary to optimize the use
of the plant and the machinery.

The production of electricity, however, differssome ways from other forms
of industrial production. The differences are dedvmostly from the fact that energy
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cannot be stored in large quantities; thus the yrtbon has to meet the demand very
accurately at all times. Energy produced in exaesy be wasted, which means
useless consumption of fuel or water, and lossethtocompany. On the other hand,
if the production does not reach the demand, tséesy may fail, and this may lead
blackouts. Thus, accurate short-time forecastshef demand are essential for the
operation of a system.

The privatization of utilities and the deregulatiof energy systems, which
started in several countries by the late 1980sg teso increase the importance of
forecasting and raised the cost of the forecastimgrs. Highly competitive energy
markets have sprung up, focusing on energy progluatith high quality standards,
at low costs. Particularly, one day ahead forecastsame extremely important,
because besides being needed for the day-to-dawgtapeof the system (scheduling
the times for turning the generating units on affd s as to minimize production
costs), they are also one of the inputs neededh®rdefinition of the price of
electricity in the market [1]. Data on energy dechane usually obtained in the form
of time series of electric loads. The forecastifigubure values of these series has
been tried by several different methods. Some e$ehare based on univariate (time-
series) models, in which the forecast is a functbrthe past load only. Others are
based on multivariate techniques, in which thedase is a function not only of the
past loads, but also of exogenous variables retat¢de weather or to social events.
Many artificial intelligence techniques have begead for this task, because of their
flexibility and their ability to model complex nankar multivariate relationships.
Among these, the most frequently researched hawn libe Artificial Neural
Networks [2].

This paper describes simulations done with a ntethat combines artificial
neural networks and genetic algorithm, and we psepm novel cost function to be
minimized. Usually, the models minimize the meamuasq error (MSE) of the
forecasts. Since, however, the forecasts are madeei same instant of time for
different forecasting horizons (in this paper, fexample, we consider that the
forecasts for all the 24 hourly loads in the neay dre done at today’s midnight), the
forecasting errors tend to be highly autocorrelatEdis is undesirable, since the
existence of autocorrelation in a series of ernoesins that the model is not extracting
all the information available in the data. In tisigper, we propose a cost function
which is a variation of the well know Ljung-Box 8#iic used to test the
autocorrelation of the errors generated by thessizl times series models, such as
the ARIMA models.

2 Material and methods

2.1 Load data from Rio de Janeiro

For the simulations, we used a series of load (WHYlmeasured in the city of
Rio de Janeiro, by a local power company. Thislzega contains the hourly loads for
days 01/Jan/1996 to 30/Dec/1997, adding up to P/observations. Loads on special
days (such as holidays) are usually forecastetheffly the companies, by means of
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proprietary methods that tend to be largely emairisince these loads are not the
focus of this paper, we opted to smooth them ouhefseries, replacing them by the
average of previous observations on the day ofvéek and at the same time.

Load series usually have complex structures, inofydeveral superimposed
seasonal patterns. The lineplot in Figure 1 hidittica weekly cycle: the demand is
higher from Monday to Friday and lower on weekends.
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Fig. 1. Typical demand curves for summer and winter (Ridaneiro, Brazil)

Also, daily cycles are clearly seen: in winter,\a#iekdays tend to exhibit the
same profile (series of 24 hourly demands), wiffeak at 19h; in summer, the profile
is different, with a peak at 15h and another at 230, there is a yearly cycle, linked
to the seasons, that can be noticed both in Fiy@ed Figure 2; the increase in load
during summer is due to the intense use of air-tioméhg.
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Fig. 2. Weekly average loads in one year (Rio de JanBnaxil)
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This load series was partitioned into three subseiData ranging from week
15 to 64 were used for training the ANNSs (thegning sample). Data from week 65 to
84 were used by the genetic algorithms to checKithess of the competing models
(the validation sample). Finally, data from weeks 85 to 104 weseduto test the
models selected by GA, against four different bematks (thegestsample).

2.2 Statistical model load curve

In this paper we use a standard “load curve mott#l"forecasting. These
models are frequently used in the electricity indysnainly due to their simplicity of
implementation and the relative ease of interpietadf their results [3]. The idea is
to model the expected profile of a day assumingieripa functional mathematical
form for its shape. After a model is estimateds fied at the end of each day with new
data, and then used to forecast the profile fomthe 24 hours.

In the most common univariate additive model, tamdnd at time h on day d,
L(d,h), is given by the sum of a base componentB(dvhich is a function of the
most recent previous observations, with a randowor &(d,h), as in eq. (1):

Lam =Biam * Ran @)

As the statistical model above is, in principlesirgle univariate model for all
hours of the day, it is necessary to adopt soméadeto consider the multiple layers
of seasonality of the data, and thus obtain bettedictions. Some authors, such as
[4] and [5], recommend splitting the data into Zparate time series, and then
adjusting one model for each hour of the day. Gtheuch as [6] and [7] advise
splitting the data into 168 separate series, onedch of the 168 hours of a week. A
third option figures in the recent literature: kiggpa single model, but choosing one
that can model simultaneously the triple seasgnaliesent in load series. A more
recent such development was the adaptation of te#-kwown Holt-Winters
exponential smoothing method [8] and [9]; this noettlwas used on the same data
series as in the present paper, and its resulissagtas a benchmark

Instead of using a univariate model, another opsamsing a multivariate one,
capable of dealing simultaneously with several ta@nd 24 outputs (the forecasts).
This has been frequently done in recent years gnsef artificial neural networks;
we discuss them below.

2.3 Atrtificial neural networks (ANNSs)

The ANN models we use are Multi-Layer Perceptramish a single hidden
layer. They are very adaptable, the can incorpdregeseveral levels of seasonality in
a single model.

The ANNs we used had only one hidden layer, witpmgiidal activation
functions. To estimate the neural network weighits, used a training function that
incorporated regularization [10]. We chose thisction because it led to an improved
accuracy, as compared to a few others which wetaked out. The neural network
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has 24 output nodes, representing the load profithe next day. The choice of the
input variables, the number of hidden layers amdrthmber of training epochs were
done by a genetic algorithm (section 2.4).

For forecasting next day's profile, the availablelt variables were the
temperature differences (the differences betweentéimperature at each hour in a
day, and the temperatures at the same hours opréwous day), the measured
hourly loads, and seven dummies to represent thes aé the week. So, we
experimented with a total of 103 possible inpuiatales, as follows:

24 differences between the hourly temperatures unedstoday, and those

measured yesterday

24 differences between the hourly temperatures unedstoday, and those

forecasted for tomorrow

48 hourly loads measured today and yesterday.

06 bits, representing the days of the week.

2.4 Genetic Algorithms (GAS)

One of the difficulties in the implementation of AN is the lack of straight-
forward criteria to help the researcher in definthg parameters of the model or of
the training process. Just as there is still ncegaly accepted methodology for the
selection of input variables, there are also negtibr selecting the number of layers
and of hidden neurons, etc. For the definitiontefse parameters, GAs have been
tried by several authors [11], and we used thethigpaper.

The GA we used was of a binary generational tyfwe Stopping criterion was
the stabilization of the best genes, for 200 gdimrs, and the existence of 50
individuals in the population without crossover igier, and with mutation operator
with probability 0.2. The selection was made thtowme tournament, and “elitism”
was implemented (i.e., 49 individuals are passedodie next generation; only the
worst individual is discarded).

Each individual (i.e., each ANN model) was représdrby a vector of bits.
The first 103 bits were used to represent the ckteliinput variables; the variables
eventually included are listed in Table 1. The rfeve bits are used to represent the
number of hidden neurons (01 to 32); the final bigresent the number of epochs
(01 to 32) for ANN training; since we used a trami function based on
regularization, we did not use cross-validationdontrol early stopping.

A GA minimizes a chosen cost function or criterittsually, this is the mean
square error (MSE) of the fitted model; in this pghowever, we experimented with
the function defined below.

2.5 The cost function

As explained in the introduction, profile forecastimethods frequently result
in forecasting errors that exhibit marked autodatien, instead of being white noise,
as would be ideally expected. In order to redugeahtocorrelation, we experimented
using a GA for minimizing a cost function Q defineyt
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In this equation, each product e(t) x e(t-i) may tensidered as an
approximation to the autocovariance of the sef@dag = i. This sum of the squares
of autocovariances Q is analogous to the statistses! in the “port-manteau” tests
(commonly employed in ARIMA modeling), which aresea on the sum of the
squares of the autocorrelations of the errorsifdags in a given interval - if the error
is a white noise, all the autocorrelations are ketpuaero, and the sum tends to zero.
By minimizing Q, therefore, we expect to minimie tautocovariances present in the
error series. We used this cost function in twosvay

First, we run the GAs three times, searching toimmire the cost function as
defined in eqgs. (2) and (3), with et representhgforecasting error at each hour. The
models that resulted of these three runs are lisdw as GAO01l, GA02, GAO3.
Second, we did another three runs of the GAsititlmie using et to represent the total
daily forecasting error (the sum of the hourly esjpthe models that resulted are
listed below as G04, GAO5 and GAO06.

2.6  Other details

Benchmarks

The different models we experimented with were carma@ among
themselves, and also against four benchmarksynmstef their forecasting accuracy.
The benchmarks were two naive forecasters (NaMeiye2), a modification of the
well-known Holt-Winters exponential smoothing medh@HWT), and an artificial
neural network (ANN). These benchmarks are detditddw.

Naivel this method forecasts the load at the hour hagfdl by using the load
at the same hour on the previous day; that is:

Zyh = Zgan

This is a naive method takes into account the daifsonality (the daily load profiles
tend to repeat themselves from day to day). Howeheés daily seasonality is broken
at the weekends: since this method predicts Moridagls with basis on Sunday
loads, its accuracy is expected to be poor.

Naive2 this method forecasts the load at the hour hayf d, by using the
load at the same hour on day with the same dendiminan the week before; that is:

Zyh=Zy-7n
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This method takes into account the weekly seadgrilionday loads, for example,
are predicted with basis on the previous Mondagdpabut it does not take into
account the variation in average level caused éy#arly seasonality.

HWT: Taylor [8] and [9] adapted the Holt-Winters expatial smoothing
method, adding two new equations, to allow it taldeith series which show three
levels of seasonality. We experimented with thishoé on the same load series on a
previous study [12], and the results are here asdzenchmarks.

ANNZ2001 In a previous study [13], we used a large nemetwork to
forecast the same load series as in this papes ANN was a MLP, and its
architecture and training parameters were chosén lveisis of empirical validations,
instead of by a genetic algorithm. These earlyltesuwe here used as benchmarks.

Error measure

The forecasting accuracy of the different methodsewcompared by means
of the the mean absolute percent error (MAPE) eeffias:

MAPEleOxEZ

t=1

(4)

4-2‘
z

We chose this error measure because it has proviee the most commonly used in
the load forecasting literature, due to its easgrpretation.

3 Results

Table 1 shows the details of the three ANNs setkt the three GA runs we
did using the cost function in (3) as the fithassction (GA01 to GA03). Table 1 also
shows the details of the ANNSs selected by the G#susing the second cost function
defined in Sect. 2.6.2, the one based on the daity of errors, instead of on the
hourly errors (GA04 to GA06).

Method #neurons  Training Temperature Temperature Loads on Dummies
epochs differences: differences: last two
today- yesterday- days
yesterday day before

GAO1 29 11 11 17 19 4
GAO02 18 15 10 14 23 6
GAO3 29 13 1C 13 29 5
GAO04 31 13 14 23 31 5
GAOE 17 10 11 15 21 6
GAO06 18 11 10 17 23 5

Table 1. ANNs selected by each run of a GA
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We run every one of these six models 30 times eacthe training samples,
to train their weights, and then simulated theire@asts over the test sample, and
computed their MAPEs. These are described summarilyfable 2: the minimum
MAPE obtained on the 30 runs (i.e., the best fat)athe maximum MAPE (the
worst forecasts), and the average MAPE.

Maximum Minimum Average Median
ANNs MAPE MAPE MAPE MAPE
GA01 2.49 2.01 2.24 2.27
GAO02 2.51 2.07 2.2¢% 2.22
GAO03 2.81 2.15 2.34 2.32
GA04 2.26 1.99 2.10 2.09
GAO05 2.82 2.23 2.39 2.38
GA06 2.69 2.14 2.25 2.23
ANN2001 2.75 ) 2.26 2.44 -
Naivel 3.35
Naive2 6.12
HWT 2.47

Table 2.— Results: MAPEs on weeks 85-104

These same results are shown by means of boxpidisgore 3. The MAPE
produced by HWT, and the average MAPE produced WN2001, are shown by the
blue and red vertical lines across the boxplotpeetively.

ANN2001 3 & HWT
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Fig. 3. MAPEs on weeks 85-104
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4 Discussion and conclusion

As can be seen in Figure 3 and in Table 2, the @#ell method we used
produced in general much better results than the lenchmarks. The MAPEs in all
GA runs were much lower than the ones of the twivendorecasters (Naivel,
Naive2). As compared to the other two benchmarlesnatice, first, that the mean
and the median MAPEs we obtained in the six GA mvase always lower than the
MAPE of the HWT, or the mean and median MAPEs &f ANN2001. Actually, in
half of the GAs we tried (three out of six), thedia MAPEs we obtained were even
better than théestresult obtained by the ANN2001. The median MAPRIIr6 GA
runs was 2.24% which was about 0.20% below the ADINZmedian.

However, one of the difficulties in applying ANNs the wide variation of the
results. Since there are a great many design p&esn be specified, and the
network weights have to be found by optimizationgasses, the results of the GAs
are always unpredictable. Models with very différstiuctures may be found at the
end of each run. Usually, these models result irenoo less the same performance in
forecasting (since ANNs are such large models,nglesi‘perfect’ model is never
found); it occasionally happens, however, that sonuglels are found that perform
very poorly when applied to test data; such areiristance the ones whose MAPEs
are shown as outliers in the boxplots in Figure 3.

Because of that, one should always consider, wimatyzing the results of
ANN forecasters, not only the mean or median emeasures, but also the worst
cases — the very large prediction errors, the ¢in@s had they occurred in real life,
would have resulted in serious losses for the edétyt companies. In this respect, we
find that the models selected by the GA runs peréat comparatively well. Out of
180 runs (30 of each GA), only six values were wered as outliers (see Figure 3);
but even these were well below the limits set leyNaivel and Naive?2 forecasters.

We think, therefore, that the results of the GAdmhsnethod we tried were
very promising. For future research, we beliewsduld be interesting to experiment
with the use of ANN committees, instead of indivatlANNSs, since this might lead to
a further reduction in the variation of the MAPEs.
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